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Superoscillatory Radar Imaging: Improving Radar
Range Resolution Beyond Fundamental
Bandwidth Limitations

Alex M. H. Wong, Student Member, IEEE, and George V. Eleftheriades, Fellow, IEEE

Abstract—In this work, we propose to improve the range reso-
lution in a conventional radar system by employing a superoscil-
latory pulse as the radar pulse. A superoscillatory waveform is a
waveform which contains, across a finite time interval, faster vari-
ations than its highest constituent frequency component. As such,
radar imaging using a superoscillatory pulse allows one to detect
an object with a range resolution improved beyond a fundamental
bandwidth limitation. In this work, we experimentally compare
the radar resolution performance of a 500 MHz superoscillatory
pulse with that of a sinc pulse of the same bandwidth, and demon-
strate that the superoscillatory pulse reduces distance uncertainty
by 36%. We also suggest future directions of development to our
proposed radar system.

Index Terms—High-resolution imaging, radar detection, radar
imaging, super-resolution.

1. INTRODUCTION

N a conventional radar scheme without detection filtering,
the range resolution is related to the temporal width of the
radar pulse by the simple relation

coATs4p
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where cq is the speed of light in free space and Rs;p and
ATj54p are the 3 dB resolution and temporal width of the radar
pulse, respectively. When a hard bandwidth limit is present,
radar imaging with pulse having a uniform amplitude spectrum
is perceived to achieve the best range resolution. The simplest
pulse with a uniform amplitude spectrum across the bandwidth
B is the sinc pulse. For this pulse, AT3,5 B = 0.443, so the 3
dB resolution is related to the pulse bandwidth B as
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While the chirped, flat-top pulse offers improved power perfor-
mance, it provides a similar resolution as a simple sinc pulse
after the matched filtering process [1]; hence it will not be sep-
arately considered in this work. In light of the inverse relation
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which generally occurs between the pulse bandwidth and the
achievable range resolution, recent research effort is directed to-
wards using UWB pulses for range detection in radar systems.
Nonetheless, as bandwidth has become a precious commodity in
modern communication systems, a way to circumvent the limit
expressed in (2) is proved useful in high-range-resolution radar
systems of various kinds.

In this work, we propose this alternative route to increased
range resolution through the usage of superoscillatory wave-
forms. A superoscillatory waveform is one which contains a
finite superoscillation interval, where oscillations occur faster
than the waveform’s highest constituent frequency component.
Such oscillations allow the wave to temporarily behave as if it
contains a higher effective bandwidth, which in turn allows the
formation of sharper features than restricted by (2). Fig. 1(d),
for example, shows an example of a superoscillatory waveform,
whose 3 dB width is 35% reduced compared to that of a sinc
pulse with the same bandwidth.

Though superoscillatory pulses have been theorized in the
early 1990s [2], [3], they have not been experimentally demon-
strated until very recently due to difficulties in managing sensi-
tivity requirements. In a recent work [4], we overcame these dif-
ficulties to achieve a first demonstration of robust time domain
superoscillatory waveforms, thus paving the way towards their
application in radar systems. In the following, we first overview
our method for superoscillatory pulse design. We then describe
our experimental radar system, and compare the range resolu-
tion achieved using a superoscillatory pulse with that of a sinc
pulse of the same bandwidth. Finally, we discuss the implica-
tions of this work and suggest directions for future improve-
ment.

II. SUPEROSCILLATORY WAVEFORM DESIGN

We adapted our method of superoscillatory waveform design
from Schelkunoff’s method of superdirective antenna design
[4], [5]. We shall briefly overview our formulation, then employ
it to design a superoscillatory radar pulse which will be used for
radar imaging.

A. Overview of Formulation

Consider a periodic waveform synthesized by discrete sinu-
soidal components. Its frequency spectrum can be written in
complex exponential form, as

N-1

V(w) = Z and(w — wo — nAw)
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Fig. 1. Superoscillatory pulse design. (a) A plot showing the zeros for the su-
peroscillatory pulse. Empty circles denote zeros within the superoscillatory re-
gion; filled circles denote zeros outside the superoscillatory region. The dotted
curve line denotes the superoscillatory region. (b) The corresponding spectral
amplitude. (c) One period of the superoscillatory pulse, with the shaded area
denoting the superoscillatory region. (d) An amplitude plot of the superoscilla-
tory region (solid), showing a 3 dB pulse width improvement of 35% over a sinc
pulse of 500 MHz bandwidth (dashed).

where w is the angular frequency, wq represents the location
of the lowest (most negative) frequency delta function, Aw is
the frequency spacing between adjacent tones, and a,, is the
weight for the n’th delta function. The corresponding temporal
waveform, obtained by taking the inverse Fourier transform of
(3), is
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Equation (4) assumes a polynomial form, much like that for the
array factor of an N-antenna array with feed current distribution
a,. Thus we can design its profile using methods of antenna
array design. Following Schelkunoff’s antenna design method-
ology, we factorize (4) to obtain

_ an_ it N1
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where z, is the set of zeros for the function V' (z = e/2«*), and
where the voltage profile for a temporal Bloch period (V(¢) for
tg <t <ty + T) corresponds to the value of V' (z) along one
revolution around the unit circle |z| = 1. In this perspective, one
can draw upon established works on discrete filter design [6] to
place the N — 1 zeros in the polynomial, and thereby design the
temporal profile of the periodic waveform. This waveform syn-
thesis method is perfectly analogous to Schelkunoff’s method
of antenna array synthesis.

A case of particular interest arises when one close-packs
some or all available zeros into a design interval T; < 7. This
way of placing zeros is analogous to the design of superdirec-
tive antennas, and will allow one to generate superoscillations
within the time interval Ty.

B. Waveform Design and Characterization

Using this method, we design the superoscillatory pulse to
be used in the proceeding experiment. We use 21 spectral lines
evenly spread between 500 MHz, which gives us freedom to
locate 20 zeros on the z-plane. We locate six zeros within the
superoscillatory design interval Ty € [—1.5 ns, 1.5 ns], using a
Tschebyscheff polynomial expansion procedure. With this ex-
pansion we construct a waveform with sidelobes below 20% of
the peak voltage. As a means of lowering the waveform sensi-
tivity, we place the remaining 14 zeros outside the superoscilla-
tory region to minimize the sideband amplitude. We suggest the
interested reader to refer to [4] for a detailed discussion on our
pulse design methodology.

Fig. 1(a) and 1(b) show the resulting zero locations and the
corresponding spectral amplitude. Fig. 1(c) shows a period of
the temporal waveform, with superoscillations occurring in the
design region T,. Fig. 1(d) compares the waveform to a sinc
function of the same bandwidth across the design region 7.
The temporal waveform has a calculated 3 dB width of 0.57 ns,
which is 35% narrower than the sinc pulse, for which the 3 dB
width measures 0.88 ns. This pulse width can be further nar-
rowed through tradeoffs with the duration of the design interval
and the sideband amplitude. As we shall observe, this narrowed
pulse width leads to a direct improvement in the range resolu-
tion in a radar imaging scheme.

III. SUPEROSCILLATORY RADAR SYSTEM

We first generate our test pulse V'(¢), as depicted in Fig. 1(c),
with an arbitrary waveform generator bandlimited to 500 MHz.
The arbitrary waveform generator combines the harmonics
shown in Fig. 1(b) in the appropriate phases to form the desired
V(t). This pulse modulates a 4.2 GHz carrier, which is then
amplified and transmitted through a horn antenna. The pulse
is reflected off a metallic plate—representative of a point
scatterer—placed a set distance away, and is recollected by the
horn, demodulated and observed with an oscilloscope. Calibra-
tion with one scatter distance establishes a time of zero delay;
thereafter, for a scatterer placed at an arbitrary distance away,
the delay 7 attained by the superoscillatory peak determines
the scatterer’s distance through the simple relation

coT | Rsip

d= -+ =7, (©6)

Fig. 2 shows reflection traces at three image distances: 3.45
+ 0.02 m, 3.72 &+ 0.02 m and 3.98 + 0.02 m. These reflections
translate into respective range measurements of 3.45 £ 0.05 m,
3.68 & 0.05 m and 3.98 £ 0.06 m, which agree with results from
physical measurements, and hence demonstrate the system’s ac-
curacy for single target detection. Notwithstanding slight distor-
tions, the overall shapes of the superoscillatory pulses, including
the superoscillatory peaks, are preserved.
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Fig. 2. Reflection traces for the superoscillatory pulse at distances 3.45 +
0.02 m, 3.72 £ 0.02 m and 3.98 + 0.02 m. The distances inferred from the
peaks of the reflection signals are 3.45 £+ 0.05 m, 3.68 & 0.05 m and 3.98 &+
0.06 m respectively.
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Fig. 3. Comparison on range resolution at d = 3.45 m. The 3 dB resolution
for the superoscillatory pulse (solid) is 7.7 cm. This resolution is 36% improved
from the measured 3 dB width of 12.0 cm for a 500 MHz sinc pulse reflected
from the same distance (dashed).

Fig. 3 compares the superoscillatory pulse with a 500 MHz
sinc pulse as they reflect from a scatterer placed at 3.45 m away
from the horn. The superoscillation peak can be clearly ob-
served, with a 3 dB resolution of 7.7 cm, which is 36% improved
over the 500 MHz sinc radar pulse, which has a 3 dB resolution
of 12.0 cm. This obtained percentage improvement agrees with
our theoretical calculation in Section II, and thus shows that the
reduced temporal width directly translates into an improvement
in distance resolution. The observed reflections differ from the
designed waveform in two minor manners. Firstly, since our de-
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modulator rejects the DC signal component, our observed re-
flections each contain a DC offset as compared to the designed
pulse. Additionally, an asymmetric skew appears to the side-
lobe levels on either side of the main peak, likely as a result of
dispersion within the radar system. While these artifacts can be
rectified using conventional signal processing techniques, they
do not degrade the pulse resolution as is evident in Fig. 3.

IV. CONCLUSION

In this work we have demonstrated for the first time that
one can improve the range resolution of a radar system using a
superoscillatory radar pulse. In our proof-of-principle experi-
ment, we demonstrated a 36% improvement in range resolution
by using a superoscillatory radar pulse in place of a sinc
pulse of the same bandwidth. This improvement is obtained in
real-time, without the aid of super-resolution post-processing
algorithms. The resolution can be further increased through
tradeoffs with sideband amplitudes and overall pulse duration.
Admittedly, in the proposed scheme, resolution improvement
is obtained at the expense of the system’s signal-to-noise
ratio, as theorized by previous work in superoscillations [7].
Nonetheless, the proposed scheme could be directly of use in
radar systems where range resolution is to be maximized in the
presence of hard bandwidth constraints. Further investigations
which potentially improve the system include the application of
superoscillation to match filtering processes, the comparison to,
or incorporation with, other super-resolution post-processing
techniques, imaging extended objects, and bandwidth extension
through truncating and perhaps reshaping the superoscillatory
sidebands.
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